The Visitor Center’s main entrance facing guests into composition with the surrounding area. The blue glasswork site signifies water reusing the desert’s forms from the air of distillation.

Solar PV panels installed in walled facade buildings giving the impression of rising up towards the sun. The daylight system is featured throughout and helps give the illusion of sunlight for the complex. These architectural details not only cut into the buildings themselves but help connect the walled facades with the interior facades.

The Visitor Center’s solar PV panels capture energy helping reduce local natural air flow and produce power for two solar PV stations. Sustainability is critical in arid environments.

The Visitor Center is situated in the desert allowing natural light to make the complex open and connect with the surrounding area. The blue glasswork site signifies water reusing the desert’s forms from the air of distillation.

The Visitor Center’s solar PV panels capture energy helping reduce local natural air flow and produce power for two solar PV stations. Sustainability is critical in arid environments.

The Visitor Center’s solar PV panels capture energy helping reduce local natural air flow and produce power for two solar PV stations. Sustainability is critical in arid environments.

The Visitor Center’s solar PV panels capture energy helping reduce local natural air flow and produce power for two solar PV stations. Sustainability is critical in arid environments.

The Visitor Center’s solar PV panels capture energy helping reduce local natural air flow and produce power for two solar PV stations. Sustainability is critical in arid environments.

The Visitor Center’s solar PV panels capture energy helping reduce local natural air flow and produce power for two solar PV stations. Sustainability is critical in arid environments.

The Visitor Center’s solar PV panels capture energy helping reduce local natural air flow and produce power for two solar PV stations. Sustainability is critical in arid environments.

The Visitor Center’s solar PV panels capture energy helping reduce local natural air flow and produce power for two solar PV stations. Sustainability is critical in arid environments.

The Visitor Center’s solar PV panels capture energy helping reduce local natural air flow and produce power for two solar PV stations. Sustainability is critical in arid environments.

The Visitor Center’s solar PV panels capture energy helping reduce local natural air flow and produce power for two solar PV stations. Sustainability is critical in arid environments.

The Visitor Center’s solar PV panels capture energy helping reduce local natural air flow and produce power for two solar PV stations. Sustainability is critical in arid environments.

The Visitor Center’s solar PV panels capture energy helping reduce local natural air flow and produce power for two solar PV stations. Sustainability is critical in arid environments.

The Visitor Center’s solar PV panels capture energy helping reduce local natural air flow and produce power for two solar PV stations. Sustainability is critical in arid environments.

The Visitor Center’s solar PV panels capture energy helping reduce local natural air flow and produce power for two solar PV stations. Sustainability is critical in arid environments.

The Visitor Center’s solar PV panels capture energy helping reduce local natural air flow and produce power for two solar PV stations. Sustainability is critical in arid environments.

The Visitor Center’s solar PV panels capture energy helping reduce local natural air flow and produce power for two solar PV stations. Sustainability is critical in arid environments.

The Visitor Center’s solar PV panels capture energy helping reduce local natural air flow and produce power for two solar PV stations. Sustainability is critical in arid environments.

The Visitor Center’s solar PV panels capture energy helping reduce local natural air flow and produce power for two solar PV stations. Sustainability is critical in arid environments.

The Visitor Center’s solar PV panels capture energy helping reduce local natural air flow and produce power for two solar PV stations. Sustainability is critical in arid environments.

The Visitor Center’s solar PV panels capture energy helping reduce local natural air flow and produce power for two solar PV stations. Sustainability is critical in arid environments.
SITE ANALYSIS

The site is flat and receives an average annual rainfall of just 5.12 inches, there are prevailing winds that originate from the west and pass across the site. The landscape due to the lack of vegetation is fairly bare, and there's a sense on the site including the famous dusty road. Cap Rock is one of the nearby Badger Formations and Mesa Buttes, Candlestick Valley area is the fourth largest with Quartz Mountain. The north west is the site. Access is restricted from the existing Cap Rock parking for from Kay's View Road with it being the only common source of water. The site's primary source is the north of the site, vegetation, rock and wooden formation used as inspiration for the concept and design.

BROUSSE TIGRÉE & DESICCATION - DESIGN & CONCEPT

Between the four cities of Los Angeles, San Diego, Phoenix and Las Vegas in the vast Sonoran Desert region is Joshua Tree National Park. Known after the Joshua Tree which bears the same name, the national park spans across six entire miles of wildlife including islands, streams and over 250 species of birds. Also contributed to the site's inspiration are the harsh environments that lack upon the selection of rock forms such as the Good Medicine and Old Mormon Rock. A landscape to almost every ravine manufacturer's TV commercialized the park's beauty can be as significant or under the stars or right then in the scorching 100° departure.

The average annual rainfall of just 5.12 inches water source dramatically effects the vegetation seen within the National Park. And although 'rain water' for the park much of the depleted areas are sustainable to various stages of what is now known as "Desertification". These stages then the landscape will eventually lose its ground, creating horizon, division and retreat like patternings.

This organic shaping is called "desertification" and is a greater scale "brousse tigrée" and visually demonstrates the importance of "near-ring" and surviving water in inhabitable environments in Joshua Tree National Park.

It isn't just the landscape that relies on daily water, many of the park's 2.85 million visitors do as well. With temperatures in mid-spring reaching over 100° it is essential for the visitors centers at Joshua Tree to help ease the importance of conserving and recycling water with the hook and debase environment.

Early sketches and patio designs focused on the open like walkways and eventually investigation into creating a steep climbing of forms (see the stocking patio object) for the exterior façade. Shimming of canopies helped understand the stepped angles and shapes and helped create steel for organic patternings, combination of all of all these concepts come together in a final patio design.

It was critical that the design portrays the message and importance of water preservation initial sketches and patio models looked at desiccation and related concepts of division and displacement of earth. This organic pattern shaping of the landscape is created with work in steels and water cloaking composition and fragmentation.

The narrow passages that are formed was the first concept that developed thevisitor center design and became the tools for movement of visitors around the site. Access around the site is purposely narrow to make the visitor feel compression and then release into the individual buildings.

The next concept was that equally important was the layout to the site, born from functionality the building was divided into seven parks fused together with the main lobby including reception desk. The site's four fragmented buildings pulling apart from themselves in forms of prongs. Inspired by the pattern of land of brousse tigrée and desertification the impression was to make the visitor feel the same kind of water that the surrounding land was experiencing.

The final concept was to the feeling of destination created from wash cutting on the surface of desiccation, this row of planting and a single form, inspiration came from the fragile seed survival of plants life. These inspired an area of such sites created fragile form with rough hard lines that almost are not connected. The idea that the form is expanding and compression from a lack of water is similar pace for the building-versal façade.

The second pedestrian façade inspired from the checking of potentiates is one of the focal points in the visitor center. This is the only place that we see the raw material did and stretched from the inside transporting glass pendant to look out towards Quail Mountain. The pattern distinctive isn't decorative but acts as solar shading device and architectural light reflecting the light towards reducing vision glare within the Educational exhibition areas.

Restored perspective of the last interior wall of the exhibition areas, this one shows the interactive presentation and video wall on a separate levered with black seating.

FAÇADE TECTONICS AND EXHIBITION AREA

Study models further helping what facades was the worst standing and look at walkways / movement of visitors

A final study model was created to final express the concept and design East façade with built environmen.

REAR VIEWING (WEST) FAÇADE

Study models made on stacked potentiates were created with quick rack spin of scale and impression for visitors.

EXHIBITION AREA

REAR VIEWING (WEST) FAÇADE

SECTION

FRONT (EAST) FAÇADE

Lobby Area

Exhibition Area

Exhibition Area

Refreshment Area

SUN RISE

SUN SET

SECTION

10' 20' 30' 40'
SCALE